ສະຫຼຸບ: Metal ore beneficiation is a critical step in the mining industry, aimed at separating valuable metal minerals from gangue based on their physical or chemical property differences.

Metal ore beneficiation is a critical step in the mining industry, aimed at separating valuable metal minerals from gangue based on their physical or chemical property differences. The mainstream beneficiation methods can be broadly categorized into three groups: physical beneficiation, chemical beneficiation, and bio-beneficiation. Among these, physical beneficiation is the most widely applied due to its low cost and environmental friendliness. The selection of an appropriate beneficiation process depends largely on the characteristics of the target metal minerals, such as magnetism, density, and surface hydrophobicity.

Metal Ore Beneficiation Methods

1. Physical Beneficiation: The Low-Cost Solution for Broad Industrial Application

Physical beneficiation separates minerals without altering their chemical composition, relying solely on differences in physical properties. This approach is suitable for most easily liberated metal minerals. The four core physical beneficiation methods are:

1.1 Magnetic Separation: Targeted Recovery of Magnetic Metals

  • Core Principle:Utilizes differences in mineral magnetism (e.g., magnetite is attracted to a magnetic field, while gangue minerals are not) to separate magnetic from non-magnetic minerals.
  • ສ່ວນປະຈໍາໃຊ້: ສໍາລັບລໍດອນສູງຄວາມຕໍ່ສູງ ແລະ ແອດຣະອດສໍາລັບຕົວຂະບວນ. ສໍາລັບ magnetite (ມະລັດສູງ) ແລະ pyrrhotite (ມະລັດອ່ອນ). ບໍ່ ກໍໍ໇ຈ ສໍາລັບອະນໍ່ຕົມອາສາຈຂັດຈິງຈໍ້ສໍາລັບປັນຫາສະກິດສັ່ງທ່ານໍໃນໃນປັເຼືອLoai सोम.
  • Key Applications:
    • ສະຖານທີ່ດັດເຮືອສິນສະບອຍສາຫລຝາທີ່ສົມບັດແລະການສີແລະບັນທັດ 25%-30% ຖຶງກັບ 65%.
    • ມະລັດອ່ອນເພາະເຊິ່ງຈິປິ ແລະເລຄາລະບໍຖອ່ຍ, ຕໍ່ທຸລະບົດເຜັດການສົກແຈວອົງເກັບ.
  • ປະໂຫຍດ:Low pollution, low energy consumption, and large processing capacity (single magnetic separators can handle thousands of tons per day).
Magnetic Separation

1.2 Flotation: “Hydrophobic-Hydrophilic” Separation of Fine Valuable Minerals

  • Core Principle:Chemicals (collectors and frothers) are added to make the target metal mineral hydrophobic. These particles attach to air bubbles and rise to the surface as froth, while non-target minerals remain in the pulp.
  • Applicable Metals:Copper, lead, zinc, molybdenum, gold, silver, and other fine-grained (typically
  • Key Applications:
    • The standard process for copper ore: Sulfide copper flotation upgrades ore from 0.3%-0.5% Cu to a 20%-25% copper concentrate.
    • Auxiliary gold recovery: For finely disseminated gold, flotation first concentrates it into a sulfide concentrate, reducing cyanide consumption in subsequent cyanidation.
  • ປະໂຫຍດ:High separation efficiency (recovery rates above 90%), effective for complex polymetallic ores.
  • ຂໍ້ເສຍປຽບ: Use of chemical reagents requires wastewater treatment.
Flotation Machine

1.3 Gravity Separation: Exploiting Density Differences to Recover Coarse Heavy Metals

  • Core Principle:Gravity separation utilizes density differences between heavy metal minerals and lighter gangue in a gravitational or centrifugal field.
  • Applicable Metals:Gold (placer and lode coarse particles), tungsten, tin, antimony, especially coarse particles larger than 0.074 mm.
  • Key Applications:
    • Placer gold mining uses sluices and shaking tables to recover natural gold with over 95% recovery.
    • Tungsten and tin ores undergo gravity separation as a roughing step to discard 70%-80% of low-density gangue before flotation.
  • ປະໂຫຍດ:No chemical pollution, very low cost, simple equipment.
  • ຂໍ້ເສຍປຽບ: Low recovery for fine particles and minerals with small density differences.
Gravity Separation

1.4 Electrostatic Separation: Utilizing Conductivity Differences for Special Metals

  • Core Principle:Separates minerals based on differences in electrical conductivity (e.g., metallic minerals conduct, non-metallics do not) in a high-voltage field, where conductive minerals are attracted to or repelled by electrodes.
  • Applicable Metals:Mainly used for separating rare metal minerals like titanium, zirconium, tantalum, and niobium, or for cleaning concentrates (e.g., removing non-conductive gangue from copper/lead/zinc concentrates).
  • Key Applications:
    • Titanium separation from beach sands: In Hainan, electrostatic separation isolates conductive ilmenite from non-conductive quartz.
    • Concentrate purification: Removing poorly conductive quartz from tungsten concentrate to upgrade its grade.
  • ປະໂຫຍດ:High separation precision, no chemical reagents.
  • ຂໍ້ເສຍປຽບ: Sensitive to moisture (requires drying), low throughput, typically used only as a cleaning step.

2. Chemical Beneficiation: The “Last Resort” for Difficult Ores

When metal minerals are finely disseminated or tightly bound with gangue (e.g., oxidized ores, complex sulfides), physical methods may fail. Chemical beneficiation breaks down mineral structures to extract metals, mainly via:

2.1 การชะล้าง: “การละลายและการสกัด” ของไอออนโลหะ

  • Core Principle:แร่ถูกแช่ในตัวทำละลายเคมี (กรด, ด่าง, หรือสารละลายเกลือ) เพื่อทำให้โลหะที่ต้องการละลายในสารละลายชะล้างที่ตั้งครรภ์ (PLS) จากนั้นโลหะจะถูกกู้คืน (เช่น โดยการตกตะกอน, การซีเมนต์, หรือการชนะไฟฟ้า).
  • Applicable Metals:ทอง (ไซยาไนเดชัน), เงิน, ทองแดง (การชะล้างแบบกอง), นิเกิล, โคบอลต์, และโลหะทนความร้อนอื่นๆ.
  • กรณีศึกษา:
    • การไซยาไนเดชันทอง: แร่ที่ถูกบดเป็นผงละเอียดถูกผสมกับสารละลายไซยาไนด์; ทองสร้างซับซ้อนที่ละลายน้ำได้และจะถูกตกตะกอนด้วยผงสังกะสีในภายหลัง (การกู้คืน ≥90%). มลพิษไซยาไนด์จะต้องอยู่ในระดับที่เข้มงวด.
    • Copper Heap Leaching: Low-grade oxide copper ore (0.2%-0.5% Cu) is irrigated with sulfuric acid; copper dissolves and is recovered via solvent extraction and electrowinning (SX-EW) as cathode copper (cost-effective for low-grade ore).

2.2 ຂະບວນການແດງສົດ-ໃຊ້ງານຮ່ວມ

  • Core Principle:ທອງຄືນກະທຳສູງຕົວບົວ(300-1000°C)ເພື່ອແປງບົ່ນບິນໃນແບບສູງລົງ
  • Applicable Metals:ສ່ວນສູກບົວເພາະເພິ່ນ ແລະ ອິກແລະດິນເຊືອມ (ເຊັ່ນ, ဆິແຊບັດ, copper sulfide).
  • Case Study:
    • Nickel Sulfide Roasting: Converts nickel sulfide to nickel oxide, which is easily leached with sulfuric acid, avoiding sulfide interference.
    • Refractory Gold Ore Roasting: For ores containing arsenic and carbon, roasting removes arsenic (volatilized as As₂O₃) and carbon (which can adsorb gold), enabling subsequent cyanidation.

2.3 Microbial Beneficiation: An Environmentally Friendly Approach for Low-Grade Ores

  • ໃນສິນດອງນັນວິຄະງາມປອນຖັງສ່ວນວານງຽມຖືກສິຂະສຄວາມຖະແບບຍໍກະບູນນຫຼວຍດີສັນ.Certain microorganisms (e.g., Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans) metabolically oxidize metal sulfides into soluble metal salts, enabling metal recovery from solution—also known as bioleaching.
  • Applicable Metals: (e.g., ), , , (as ).
  • ປະໂຫຍດ: (no ), (microbes ), 0.1%-0.3%.
  • ຂໍ້ເສຍປຽບ: (weeks to months), .
  • :Approximately comes from , such as in .

3. The for

3.1 ວິເຄາະຄຸນລັດແຫະດິນ:

  • ສິນກະແມ່ງປະກອບ (e.g., magnetite) → ການແຍກແມ່ນກະແກ່
  • ເສະແດງຝຸນບິນທີ່ມີຄວາມແຕກຕ່າງກັນ (e.g., copper ores) → ການເລັດດຽວ
  • ສິນກະແມ່ງປະກອບທີ່ມີປະສົມພາບສູງ (e.g., placer gold, tungsten) → ການແຍກສິນສູນສີ

3.2 ປ່ອນເນື້ອສູນຍິດສ່ຽງສູງ:

  • ສິນກະແມ່ງປະກອບທີ່ສູງ → ການແຍກສິນສູນສິນ (ລາຄາຕໍ່ແມ່ນຕໍ່ປ່າ)
  • ສິນກະແມ່ງປະກອບຕໍ່ສູງ → ການເລັດດຽວຫຼື ການລອດ (ສູງການກູ່)
  • ສິນກະແມ່ງປະກອບປ່ອນແບບສານແລະିດ ຍີດການກອນຂອງຄິນ ຫຼື ບິໂອສິນຕິນ.

3.3 ດຳລັດສິດທິເດັກໃຫ້ສົກຜົນທຽບດວຍຄ່າແລະສິດທິເພີ່ມເຄນລົດສະຫະຫາບນງາຍກໍ່:

  • ຄະນະຄະດິບຟິນທັກດ້ວຍການຕ່ອໍພະຍໍ໌ເຮບຄອກອີກດຽວກັບສ່ຽດຕາມແລະບັດໃນຊ່ວງຈິດສຽວ ແລະ
  • ໃຊ້ພື່ນທີ່ແລະອີກຟິນຮົມມິດບິດໃນລະບົບດີໄປບໍລິຍລມຫາບັນສິດທິເວັນລະຄາແລະສິດທິຂອງອາກາດ